If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+4x-100=0
a = 6; b = 4; c = -100;
Δ = b2-4ac
Δ = 42-4·6·(-100)
Δ = 2416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2416}=\sqrt{16*151}=\sqrt{16}*\sqrt{151}=4\sqrt{151}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{151}}{2*6}=\frac{-4-4\sqrt{151}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{151}}{2*6}=\frac{-4+4\sqrt{151}}{12} $
| 2x-3(2-6x)=4 | | 2x+23=4x+21 | | 13-3^4+2=x | | 18x+23=59 | | 3^x=1/3 | | 12^2+y+35=0 | | 6r^2+40r-100=0 | | 3^x=3 | | 3+4x=6x-5x=-8 | | 12y^+y+35=0 | | 4(2x-3)=34 | | 3y+y=11-1 | | 3y+y=1-1 | | 32^x=2 | | 5x-3=332 | | 2z(3z+8)=32 | | x^2-4-5x+4.5=0 | | (0.34+0.21)x=1.18 | | 4000=40+40x | | x^-x-120=0 | | x+0.34+0.21=1.18 | | 3x2+13=14 | | 0.7x-9=-2 | | (t^2)-12t=36 | | 3x2̶12x+39=0 | | 6-4x=-13 | | 7y-8=4+3y | | 0.34x+0.21=1.18 | | 0.34x+0.21=0 | | 15+10=x4 | | 6(4x-1)+2(12-x)=26 | | x-4x=2-4x |